\(\int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx\) [502]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 203 \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}-\frac {\left (a^2+3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a \left (a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \]

[Out]

sec(d*x+c)*(b+a*sin(d*x+c))*(a+b*sin(d*x+c))^(3/2)/d+a*b*cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/d+(a^2+3*b^2)*(sin(
1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))
^(1/2))*(a+b*sin(d*x+c))^(1/2)/d/((a+b*sin(d*x+c))/(a+b))^(1/2)-a*(a^2-b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2
)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+
b))^(1/2)/d/(a+b*sin(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {2770, 2832, 2831, 2742, 2740, 2734, 2732} \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}}-\frac {\left (a^2+3 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (a \sin (c+d x)+b) (a+b \sin (c+d x))^{3/2}}{d} \]

[In]

Int[Sec[c + d*x]^2*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(a*b*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/d + (Sec[c + d*x]*(b + a*Sin[c + d*x])*(a + b*Sin[c + d*x])^(3/2))
/d - ((a^2 + 3*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[(a + b*Sin[
c + d*x])/(a + b)]) + (a*(a^2 - b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a
 + b)])/(d*Sqrt[a + b*Sin[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2770

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-(g*C
os[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Dist[1/(g^2*(p +
 1)), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(p + 2) + a*b*(m + p + 1)*S
in[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (Integers
Q[2*m, 2*p] || IntegerQ[m])

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}-\int \sqrt {a+b \sin (c+d x)} \left (\frac {3 b^2}{2}+\frac {3}{2} a b \sin (c+d x)\right ) \, dx \\ & = \frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}-\frac {2}{3} \int \frac {3 a b^2+\frac {3}{4} b \left (a^2+3 b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx \\ & = \frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}+\frac {1}{2} \left (a \left (a^2-b^2\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx-\frac {1}{2} \left (a^2+3 b^2\right ) \int \sqrt {a+b \sin (c+d x)} \, dx \\ & = \frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}-\frac {\left (\left (a^2+3 b^2\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (a \left (a^2-b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{2 \sqrt {a+b \sin (c+d x)}} \\ & = \frac {a b \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d}+\frac {\sec (c+d x) (b+a \sin (c+d x)) (a+b \sin (c+d x))^{3/2}}{d}-\frac {\left (a^2+3 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {a \left (a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.66 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.00 \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {2 a^2 b \sec (c+d x)+\left (a^3+a^2 b+3 a b^2+3 b^3\right ) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-a \left (a^2-b^2\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+a^3 \tan (c+d x)+3 a b^2 \tan (c+d x)+a^2 b \sin (c+d x) \tan (c+d x)+b^3 \sin (c+d x) \tan (c+d x)}{d \sqrt {a+b \sin (c+d x)}} \]

[In]

Integrate[Sec[c + d*x]^2*(a + b*Sin[c + d*x])^(5/2),x]

[Out]

(2*a^2*b*Sec[c + d*x] + (a^3 + a^2*b + 3*a*b^2 + 3*b^3)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(
a + b*Sin[c + d*x])/(a + b)] - a*(a^2 - b^2)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c
 + d*x])/(a + b)] + a^3*Tan[c + d*x] + 3*a*b^2*Tan[c + d*x] + a^2*b*Sin[c + d*x]*Tan[c + d*x] + b^3*Sin[c + d*
x]*Tan[c + d*x])/(d*Sqrt[a + b*Sin[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1038\) vs. \(2(257)=514\).

Time = 6.27 (sec) , antiderivative size = 1039, normalized size of antiderivative = 5.12

method result size
default \(\text {Expression too large to display}\) \(1039\)

[In]

int(sec(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/b*(b*cos(d*x+c)^2*sin(d*x+c)+a*cos(d*x+c)^2)^(1/2)*((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+
b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^
(1/2))*a^4+2*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-
b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^2-3*(b/(a-b)*sin(d*x+c)+a/(a
-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticE((b/(a-b)*sin(d*x+
c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^4-(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1
/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*
b-3*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)
*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^2+(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*
(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))
^(1/2),((a-b)/(a+b))^(1/2))*a*b^3+3*(b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2)*(-b/(a+b)*sin(d*x+c)+b/(a+b))^(1/2)*(-b
/(a-b)*sin(d*x+c)-b/(a-b))^(1/2)*EllipticF((b/(a-b)*sin(d*x+c)+a/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^4-a^2*b^2
*cos(d*x+c)^2-b^4*cos(d*x+c)^2+a^3*b*sin(d*x+c)+3*a*b^3*sin(d*x+c)+3*a^2*b^2+b^4)/(-(a+b*sin(d*x+c))*(sin(d*x+
c)-1)*(1+sin(d*x+c)))^(1/2)/cos(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 474, normalized size of antiderivative = 2.33 \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\frac {2 \, \sqrt {2} {\left (a^{3} - 3 \, a b^{2}\right )} \sqrt {i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + 2 \, \sqrt {2} {\left (a^{3} - 3 \, a b^{2}\right )} \sqrt {-i \, b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 3 \, \sqrt {2} {\left (-i \, a^{2} b - 3 i \, b^{3}\right )} \sqrt {i \, b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) - 3 \, \sqrt {2} {\left (i \, a^{2} b + 3 i \, b^{3}\right )} \sqrt {-i \, b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) + 6 \, {\left (2 \, a b^{2} + {\left (a^{2} b + b^{3}\right )} \sin \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}}{6 \, b d \cos \left (d x + c\right )} \]

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/6*(2*sqrt(2)*(a^3 - 3*a*b^2)*sqrt(I*b)*cos(d*x + c)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I
*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b) + 2*sqrt(2)*(a^3 - 3*a*b^2)*sqrt
(-I*b)*cos(d*x + c)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*c
os(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) - 3*sqrt(2)*(-I*a^2*b - 3*I*b^3)*sqrt(I*b)*cos(d*x + c)*weierstra
ssZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2
, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) - 3*sqrt(2)*(I*a^2*
b + 3*I*b^3)*sqrt(-I*b)*cos(d*x + c)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^
3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I
*b*sin(d*x + c) + 2*I*a)/b)) + 6*(2*a*b^2 + (a^2*b + b^3)*sin(d*x + c))*sqrt(b*sin(d*x + c) + a))/(b*d*cos(d*x
 + c))

Sympy [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**2*(a+b*sin(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int { {\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \sec \left (d x + c\right )^{2} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c) + a)^(5/2)*sec(d*x + c)^2, x)

Giac [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)^2*(a+b*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+b \sin (c+d x))^{5/2} \, dx=\int \frac {{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

[In]

int((a + b*sin(c + d*x))^(5/2)/cos(c + d*x)^2,x)

[Out]

int((a + b*sin(c + d*x))^(5/2)/cos(c + d*x)^2, x)